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FREE-BOUNDARY PROBLEMS FOR NONLINEAR MODELS

OF FLUID FILTRATION IN INHOMOGENEOUS POROUS MEDIA

UDC 517.958.532I. B. Davydkin1 and V. N. Monakhov2

Existence theorems are proved for solutions of problems of nonlinear gravity fluid filtration in regions
with specified boundaries of complex geometry. The theory developed can be used to design the un-
derground flow net of a hydraulic structure with specified filtration characteristics.
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The nonlinear law of resistance of a porous medium to a fluid flowing through it (Darcy’s law) was proposed
by S. A. Khristianovich (1940), who established an analogy between the model obtained and the nonlinear subsonic
gas-dynamic equations. Khristianovich’s model has been widely used to describe oil motion in a porous bed. V.
N. Monakhov (1961) was the first to prove existence theorems for solutions of problems of nonlinear filtration of
a fluid with free boundaries using quasiconformal mapping. In the present paper, similar results are obtained for
filtration regions with boundaries of specified complex geometry.

1. Formulation of the Problem. The physical aspects of the gravity filtration problem and results of
previous studies are reported in monographs [1, 2] and review [3].

Steady-state nonlinear fluid filtration in an inhomogeneous porous medium (soil) is described by the following
elliptic system of equations, whose solutions are obtained using quasiconformal mapping [4]:

−v = K(z, ϕ,∇ϕ)∇ϕ, div v = 0 [v = (v1, v2)]. (1)

Here K is the symmetric filtration tensor with components differentiable with respect to the argument, z = x+ iy,
ξ = ϕx + iϕy, and ϕ is the fluid potential (piezometric head). Setting aij = ∂vi/∂ξj (ξ1 = ϕx and ξ2 = ϕy) and

αij =

1∫
0

aij(z, ϕ, sξ) ds, we arrive at the representation K = {aij} [4]. Here it is assumed that the quadratic form

is Λ(ξ, λ) =
2∑

i,j=1

aijλiλj and, hence, Λ0(ξ, λ) = (Kλ, λ) =

1∫
0

Λ(sξ, λ) ds are positively defined.

After introduction of the stream function ψ(x, y) ≡ ψ(x1, x2), Eqs. (1) can be written as

ψy =
2∑
i=1

α1iϕxi = v1, −ψx =
2∑
i=1

α2iϕxi = v2

or in equivalent form for the function z = z(w) (w = ϕ+ iψ):

zw̄ −m1(w, z, σ)zw −m2(w, z, σ)z̄w̄ = 0 (σ = zw). (2)

Here mi are explicitly expressed in terms of the components αij of the tensor K continuously differentiable with
respect to all arguments. According to [5], the equation for the function z(w) is globally solvable for to zw̄, as is
shown in the form of Eq. (2). Differentiation of both sides of relation (2) with respect to w yields the following
equation for σ:
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σw̄ − n1(w, z, σ)σw − n2(w, z, σ)σ̄w̄ =
2∑

k+l=0

bklσ
kσ̄l. (3)

Here ni and bkl are expressed in terms of mi and their derivatives [4].
The assumptions of the differentiability of the tensor K and the positive definiteness of Λ(ξ, λ) and Λ0(ξ, λ)

can be written as [4, 5]

sup (‖m‖, ‖n‖) < 1, ‖b‖ <∞, (4)

where m = (m1,m2), n = (n1, n2), and b = {bkl} are the vectors and matrix of the coefficients in Eqs. (2) and (3),

respectively, ‖ϕ‖ = sup
s∑

k=1

|ϕk|, and ϕ = (ϕ1, . . . , ϕs). As is shown in [5], system (2)–(4) corresponds to the general

nonlinear elliptic equation.
Let gravity fluid filtration occur in a domain D bounded by a specified polygon P with vertices zk and

angles αkπ (0 < δ 6 αk 6 2 and k = 0, n+ 1) and an unknown curve L — the boundary between the moistened
and unmoistened parts of the porous medium. The specified polygon P consists of impermeable domains P 1 and
interfaces P 2 with the immovable fluid, which also include horizontal seepage segments. The desired complex
filtration potential w = ϕ+ iψ satisfies the following boundary conditions on ∂D = P 1 ∪ P 2 ∪ L:

ψ = ψ1, z ∈ P 1, ϕ = ϕ1, z ∈ P 2,

ϕ+ x = ϕ0 = const, ψ = ψ0 = const, z ∈ L.

Here ϕ1 and ψ1 are the piecewise continuous functions on P 1 ∪ P 2. The boundary conditions define the pre-image
D∗ of the filtration domain D [D = z(D∗)] under quasiconformal mapping of z = z(w) by the solution of Eq. (2).
In the case, the boundary ∂D∗ consists of segments of straight lines ϕ = const and ψ = const.

Another example of this type of problems is the design of the flow net of a concrete hydraulic structure L
using a head profile or a flow rate distribution (drainage layer) specified on L:

ϕ = ϕ(x), ψ = const if ϕ = const, ψ = ψ(x).

Particular problems of this type in the class of analytic functions were solved for the first time by N. I. Kochina
and P. Ya. Polubarinova-Kochina. Results of their studies are reported in [1, pp. 186–201]. The general problem
of construction of an unknown segment L of the boundary D of the domain of definition of an analytic function
w(z) = ϕ+ iψ was formulated and solved by Monakhov [6, Chapter 3]:

G(ϕ,ψ) = 0, z ∈ P, w = g(x), z ∈ L. (5)

In this case, as in the above-formulated problem of gravity fluid filtration and the problem of construction of a
concrete dam contour, boundary conditions (5) define the image D∗ of the filtration domain D [D∗ = w(D)] in the
plane of the complex potential w = ϕ+ iψ.

2. Homogeneous Soil. Steady-state fluid filtration in a homogeneous soil is described by an analytic
function w(z) = ϕ + iψ, which is a complex filtration potential. We construct a conformal map w = W (ζ),
W : E → D∗ of the upper half-plane E: Im ζ > 0 onto the specified domain D∗ whose boundary ∂D∗ = P ∗ ∪ L∗ is
defined by boundary conditions (5).

2.1. Differentiable Boundary Data. Assumptions:
(i) The polygon P ⊂ ∂D is simple [7];
(ii) The curves of (P ∗, L∗) ⊂ D∗ defined by Eqs. (5) are Lyapunov’s curves [(P ∗, L∗) ⊂ C1+α, where α > 0],

and their points of intersection w0 and wn+1 have interior angles γkπ (0 < δ 6 γk 6 2 and k = 0, n+ 1).
If Assumptions (i) and (ii) are satisfied, according to [6, p. 110], the derivative ω ≡ dz/dζ of the conformal

map z: E → D satisfies the boundary-value problem

Re[eiπ(1/2−δk) ω(t)] = 0, t ∈ [tk, tk+1],

Reω(t) = h(t) ≡ Π0(t)h∗(t), l: |t| > 1.
(6)

Here δkπ is the slope of the kth side of the polygon P , tk are pre-images of the vertices zk ∈ P , t0 = −1 < t1
< . . . < tn+1 = 1, Π0(t) =

∏
k=0,n+1

(t− tk)γk−1, lnh∗(t) ∈ Cα(l) (α > 0), αk − γk < 1− δ (k = 0, n+ 1), and δ > 0 is

a characteristic of the simple polygon.
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The solution of problem (6) is written as

ω =
dz

dζ
=

Π(ζ)
πi

∫
|t|>1

h(t) dt
Π(t)(t− ζ)

≡ Π(ζ)M(ζ), (7)

where Π =
n+1∏
k=0

(ζ − tk)αk−1 and αkπ is the interior angles at the vertices zk ∈ P [6, p. 111]. The unknown variables

tk (k = 1, n) are obtained from the equations that define the geometry of the polygon P :

lk = |zk−1 − zk| =
tk∫

tk−1

|Π(t)||M(t)| dt, k = 1, n.

As is found in [6], the parameters tk are determined uniquely and fit the inequalities

|tk+1 − tk| > ε > 0, k = 0, n, (8)

where ε = ε(‖h∗‖(α), δ) (δ > 0 is a constant in the definition of a simple polygon [7]); ‖ϕ‖(α) = ‖ϕ‖(α)
Ω = ‖ϕ‖Cα(Ω).

We introduce the weight function Π∗ =
n+1∏
k=0

(ζ − tk)βk . Here βk = 0 for αk > 1 and βk = 1− αk for αk < 1,

where k = 1, n. If k = 0, n + 1, then βk = 0 for 1 < αk < γk and αk > γk > 1; βk = 1 − αk for αk < γk 6 1 and
αk 6 1 6 γk; and βk = 1− γk for αk > 1 > γk. Then, the representation (7) leads to the estimate

‖Π∗zζ‖(ν)
E = C(ε) <∞, ν = ν(α, αk) > 0. (9)

2.2. Boundary Conditions from Cα. Let us consider the following boundary-value problem for the func-
tion z(ζ):

z(s) = P, s: |t| < 1, Re z = H(t), l: |t| > 1, (10)

where H(t) ∈ Cα(l) (α > 0).
We choose functions Hm(t) ∈ C1+α(l) such that ‖Hm−H‖(α)

l → 0 as m→∞ and set hm = dHm/dt ∈ Cα(l).
The derivative dzm/dζ of the conformal map zm: E → Dm satisfies the boundary-value problem of the form

of (6) [with h = hm(t), |t| > 1] and is represented as (7). Then, we have

z =

ζ∫
−1

Πm(ζ)Mm(ζ) dζ ≡ Fm(ζ), (11)

where Πm =
n+1∏
k=0

(ζ − tmk )αk−1 and Mm = M(ζ) for hΠ−1 = hmΠ−1
m , and the desired constants tmk satisfy the

inequalities

|tmk+1 − tmk | > εm > 0, k = 0, n. (12)

We note that if the estimates (12) are satisfied uniformly with respect to m (εm > ε0 > 0), the first condition in
(10) can be written as

Re[eiπ(1/2−δk)(z − zk)] = 0, t ∈ [tk, tk+1].

Solving the boundary-value problem

ImFm = fm(t), |t| < 1, ReFm = Hm(t), |t| > 1

and setting fm(t) ≡ 0 (|t| > 1) and Hm(t) ≡ 0 (|t| < 1), we write the function Fm(ζ) from Eq. (11) in the form

Fm = B(Hm + ifm|ζ), B(ϕ|ζ) =

√
1− ζ2

πi

+∞∫
−∞

ϕ(t) dt√
1− t2(t− ζ)

. (13)

According to the properties of the Cauchy-type integral B(ϕ|ζ), in Eq. (13), we have

‖B(Hm|t)‖(α0)
l 6 C(‖Hm‖(α0)

l ) 6 C0(‖H‖(α0)
l ) <∞, α0 = min (1/2, α) > 0.
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At the same time,

|B(ifm|t)| 6 |Fm| 6
n∑
k=0

|zk+1 − zk| = |P |, |t| < 1,

|B(ifm|t)| 6 max
τ
|fm(τ)|

√
1− t2
πi

1∫
−1

dτ√
1− τ2(τ − t)

= max
τ
|fm(τ)| 6 |P |, t < −1.

A similar estimate holds for t > 1. Therefore, for the analytic functions Fm(ζ) in the form of (13), the following
uniform estimate holds:

|Fm(t)| 6 |P |+ C0, t ∈ (−∞,∞). (14)

Obviously, this estimate holds for the entire domain E: Im ζ > 0.
From the compact [by virtue of (14)] sequence of the analytic functions {Fm(ζ)}, we distinguish a subse-

quence {Fmk(ζ)} that is uniformly convergent for Im ζ > 0. It is easy to see that the limit function z = F0(ζ)
satisfies the boundary-value problem (10) [6, pp. 130–131].

For any function ϕ(ζ) ∈ W 1
p (E) (p > 1), we designate its trace on Γ ⊂ ∂E by ϕ(t) ∈ SW 1

p (Γ) and set Qρ
= {ζ: |Re ζ| > 1 + ρ, Im ζ > ρ}. Thus, we proved the following theorem:

Theorem 1. There exists at least one solution z = F0(ζ) of the boundary-value problem (10) for analytic
functions that satisfies the estimate (14).

If H(t) ∈ SW 1
p>2(l) or H(t) ∈ Cα(l) (α > 0), then, z(ζ) ∈ W 1

p0>2(Qρ) or z(ζ) ∈ Cα0(Qρ), respectively,
p0 = p0(p, δ), and α0 = α0(α, δ), where δ > 0 is a characteristic of the simple polygon P .

3. Inhomogeneous Soil. Let the coefficients in Eq. (2) do not depend on σ = zw, which corresponds to
the case of an inhomogeneous soil under quasilinear Darcy’s law, i.e., in (1), K = K(z, ϕ).

In [8], the solvability of the problem (2), (10) was proved and interior estimates for the quasiconformal
map z: D∗ → D were derived. In the present paper, we will also obtain some estimates up to the boundary. As in
Sec. 2, we construct a conformal map w = W (ζ), W : E → D∗ of the upper half-plane E onto the domain D∗. By
virtue of Assumption (ii), (P ∗, L∗) ⊂ C1+α (α > 0), and, hence,

dW

dζ
=

∏
k=0,n+1

(ζ − tk)γk−1R(ζ), lnR ∈ Cα(E).

Then, Eq. (2) reduces to

zζ̄ − µ1zζ − µ2z̄ζ̄ = 0, ‖µ‖ < 1, (15)

where µ1(ζ, z) = m1w̄ζ̄/wζ , µ2(ζ, z) = m2, and µ = (µ1, µ2).
Let z = F (ζ), F : E → D be the desired quasiconformal map of Eq. (15). We substitute an arbitrary

measurable function z0(ζ) into the coefficients of (15) and consider a quasiconformal map ξ = ξ(ζ), ξ: E → E with
the normalization ξ(tk) = tk (k = 0, n+ 1) and ξ(∞) =∞ that satisfies the equation of the form of (15):

ξζ̄ − µ0
1ξζ − µ0

2z̄ξ̄/(zξ ξ̄ζ̄) = 0, µ0
k = µk[ζ, z0(ζ)].

By the construction, zξ̄ = 0, i.e., z = F [ζ(ξ)] ≡ F0(ξ), is an analytic function. Since ζ(ξ) ∈ W 1
p0

and
p0 = p0(m0) > 2, then z = F0(ξ) satisfies boundary conditions (10) with H[t(τ)] ≡ H0(τ) ∈ SW 1

p>2(l), l: |τ | > 1,
and p = p(p0,m0). Then, according to Theorem 1, z = F0(ξ) ∈W 1

p>2(Qρ).
Converting back to the variable ζ, we obtain the following estimate for the solution of the problem (10),

(15):

‖z(ζ)‖1,pQρ = C(δ,m0, ρ) <∞, p > 2. (16)

Here ‖ϕ‖1,pΩ = ‖ϕ‖W 1
p (Ω) and δ is a characteristic of P ⊂ ∂D.

The analysis performed in [6, 8] shows that the functions H(t) in Eq. (5) and g(x) in Eq. (2) have the
same smoothness. Therefore, we shall formulate the necessary conditions in terms of the function H(t). Using the
theorem proved in [8], we arrive at the following statement.

Theorem 2. Let H(t) ∈ SW 1
p>2(l) and µk(ζ, z) ∈ Cα(E×D0) (α > 0 k = 1, 2), where ∂D0 = P ∪P0∪Pn+1,

Pj = {z: x = xj, y < yj} (j = 0, n + 1). Then, the problem (10), (15) for the simple polygon P [Assumption (i)]
has at least one solution z = F (ζ), F : E → D and the estimate (16) holds for this solution.
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If dH/dt = Π0(t)h∗(t), lnh∗ ∈ Cα(l), and µk(ζ, z) ∈ Cα(E ×D0) (α > 0, k = 1, 2), then ω = zζ satisfies
the boundary-value problem (6), in which tk are subject to inequalities (8), and

‖z(ζ)‖1,pQρ 6 C, ‖Π∗zζ‖(ν)
Qρ
6 C(ε,m0, ρ), ν > 0, (17)

where the weight function Π∗ is determined after formula (8) is derived.
Remark 1. Using the quasiconformal mapping method developed in [6, pp. 275–279], we can weaken

the constraints imposed on the coefficients µk(ζ, z) in the first part of Theorem 2, assuming only that they are
continuous over z for almost all ζ ∈ E.

4. Problems of Nonlinear Filtration in the Canonical Domain. As in Sec. 3, Eq. (2) is converted
to the variable ζ by the conformal mapping w = W (ζ), W : E → D∗. This yields the nonlinear equation

zζ̄ − µ1zζ − µ2z̄ζ̄ = 0, ‖µ‖ < 1, (18)

where µk(ζ, z, ω) ≡ mk(W, z, ωW−1
ζ )(W̄ζ̄W

−1
ζ )2−k (k = 1, 2, ω = zζ). Equation (18) for z = F (ζ), F : E → D

is treated as the initial equation of nonlinear filtration (2) for the function z = z(w) (w ∈ D∗). Therefore, the
conditions imposed on the filtration tensor K(z, ϕ,∇ϕ) in Eq. (1) are also expressed in terms of the coefficients µk
of Eq. (18). Equation (18) is formally differentiated with respect to ζ, and the resulting equation is written as

ωζ̄ − q1ωζ − q2ω̄ζ̄ =
2∑

k+l=0

aklω
kω̄l ≡ a, ‖q‖ < 1, (19)

where q = (q1, q2) and ‖q‖ = sup (|q1|+ |q2|).
We note that the inequality in Eq. (19) is the ellipticity condition for the nonlinear equation (18).
Assumption (iii): µk(ζ, z, ω) ∈ C1(E×D0×C) (k = 1, 2), where ∂D0 = P ∪P0∪Pn+1, and Pj = {z: x = xj ,

y < yj} (j = 0, n+ 1).
An apparent corollary of Assumption (iii) is the inequality sup |akl| <∞.
For the boundedness of µkζ , the existence of the derivative Wζζ is necessary. This leads to the following

strengthening of Assumption (ii): (P ∗, L∗) ⊂ C2+α (α > 0). In filtration problems, since the boundary ∂D∗ =
P ∗ ∪ L∗ consists of segments of straight lines ϕ = const and ψ = const, the derivative Wζζ is bounded if Im ζ > 0,
except for the pre-images ζ = ±1 of the points (w0, wn+1) ⊂ P ∗ ∩ L∗. The singularities µkζ at the points ζ = ±1
complicate insignificantly the following derivations. In order that µkζ be bounded at the points ζ = ±1, it suffices,
for example, to assume that mk(w, zj , σ) = 0 (j = 0, n + 1). Below, for the solutions z(ζ) and ω(ζ) of Eqs. (18)
and (19), respectively, we will consider the boundary-value problem (6) with the function dH/dt = Π0(t)h∗(t),
lnh∗ ∈ Cα(l), whose properties are defined only by the smoothness of the boundary functions g(x) and G(ϕ,ψ) = 0
in Eq. (2).

5. Regularization of the Problem. A Priori Estimates. Let us regularize the nonlinear problem. We
introduce strips Eν = {ζ: −∞ < Re ζ <∞ and 0 < Im ζ < ν} (ν > 0) and construct a patch function χ(ζ) ∈ C3(E)
such that χ(ζ) = 0 for ζ ∈ Eρ (ρ > 0) and χ(ζ) = 1 for ζ ∈ E \E2ρ. In Eq. (18), we set µkρ = χµk (k = 1, 2); in this
case, µkρ = qkρ = aklρ = 0 if ζ ∈ Eρ. In the notation, we omit the subscript ρ, assuming that µk = qk = akl = 0 for
ζ ∈ Eρ. Substituting the arbitrary measurable functions z(ζ) and ω(ζ) into the coefficients in (18), we construct
the quasiconformal map ξ = R(ζ), R: E → E defined before formula (16) such that zξ̄ = 0 (ξ ∈ E). Since µk = 0
in the strip Eρ, the conformal map ξ = R(ζ) (ζ ∈ Eρ) can be analytically continued by symmetry to the strip
E−ρ {ζ: −∞ < Re ζ < ∞, −ρ < Im ζ < 0}. The constructed conformal image ξ = R0(ζ) (ζ ∈ Eρ ∪ E−ρ ) is analytic

on the straight line ∂E: Im ζ = 0, and, hence, ‖R0(t)‖(2)
∂E = C(m0, ρ) < ∞. Then, in the transformed boundary

condition (6) for the analytic function dz/dξ, Im ξ > 0, we obtain ‖ lnh∗[t(τ)]‖(α)
l = C(m0, ρ) <∞ and, hence, the

estimates (8) and (9) hold for dz/dξ. Converting back to the variable ζ, we note that for the function z(ζ), the
estimates (8) for the constants tk (k = 0, n+ 1) and the estimate (9) in the strip Eρ hold and, in addition, the
following inequalities are valid:

sup (‖Π∗zζ‖(ν)
Eρ
, ‖z(ζ)‖1,pE ) 6 C, ν > 0, p > 2. (20)

We write the right side of (19) as

a(ζ, z, ω) =
2∑

k+l=0

aklω
kω̄l = A0 +A1ω +A2ω̄,
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where A0 = a00, A1 = a10 + a20zζ + a11z̄ζ̄ , and A2 = a01 + a02z̄ζ̄ , and set A0
k(ζ) = Ak(ζ, z0, ω0). Here z0(ζ) is a

function that satisfies inequalities (20) and ω0(ζ) is an arbitrary measurable function.
By virtue of the boundedness of akl and the estimate (20), we have ‖A0

k‖Lp < ∞, p > 2. We denote the
resulting quasilinear equation in terms of (190) and note that for the solution ω = ω1(ζ) of problem (6), (190), the
following weight estimate holds [6, p. 275]:

‖Π∗ω‖1,pE 6 C <∞, p = p(m0, q0) > 2. (21)

Here the weight function Π∗(ζ) is determined after inequalities (8), which are satisfied in this case, as proved above.
Let us revert to Eq. (18), setting µk(ζ, z0, ω1) ≡ µ1

k(ζ) and denoting the linear equation obtained above by (181).
Since µk = 0, ζ ∈ Eρ, and ρ > 0, by virtue of (21), we have

‖ω‖(ν)
E\Eρ = C(ρ) <∞ ⇒ ‖µ1

k‖
(ν)
E = C0(ρ) <∞, ν > 0.

Then, for the solution z = z1(ζ) of problem (6), (181), an estimate in E \Eρ holds that is similar to that in Eq. (17).
Taking into account inequalities (20), we finally arrive at the following a priori weight estimate of the

solution z = z(ζ) of the regularized problem (6), (18) (µk = 0, ζ ∈ Eρ):

‖Π∗zζ‖1,pE 6 C(m0, ε, ρ), p > 2. (22)

6. Solvability of the Problem. By virtue of the a priori estimates (21) and (22), the functions u(ζ) ≡ Π∗zζ
and v(ζ) ≡ Π∗ω belong to a set N from the space W 1

p>2(E):

{(u, v): ‖(u, v)‖1,pE = C(C0, C1), p > 2} ≡ N. (23)

We choose an arbitrary element (u∗, v∗) ∈ N0 ⊂ Cβ(E), β = (p− 2)/p:

{(u, v): ‖(u, v)‖βE = C̄(C, p), β > 2} ≡ N0 ⊃ N ; (24)

substitute z∗ = u∗Π−1
∗ and ω∗ = v∗Π−1

∗ into the coefficients of Eqs. (18) and (19), setting

µ∗k(ζ) = µk(ζ, z∗, ω∗), q∗k(ζ) = qk(ζ, z∗, ω∗), a∗(ζ) = a(ζ, z∗, ω∗).

We then denote the obtained equations by (18∗) and (19∗) and construct solutions z = z1(ζ) and ω = ω1(ζ) of
problems (6), (18∗) and (6), (19∗) that satisfy inequalities (21) and (22). Therefore, the functions u1(ζ) = Π∗z1

ζ

and v1(ζ) = Π∗ω1 belong to the set N specified in Eq. (23). Thus, we constructed an operator Λ = (Λ1,Λ2) that
associates a vector (u∗, v∗) ∈ N0 ⊂ Cβ(E) (β > 2) with a vector (Λ1u

∗,Λ2v
∗) = (u1, v1) ∈ N ⊂⊂ N0, where

the sign ⊂⊂ denotes a compact embedding. By virtue of the continuity of the coefficients of Eqs. (18) and (19)
over z and ω, the operator Λ: N0 → N ⊂ N0 is bounded, continuous, and compact on the set N0 defined in (24).
Therefore, according to Shauder’s theorem, there exists at least one immovable transformation point Λ

(u, v) = Λ(u, v), (u, v) ∈ N0 ⊂ Cβ(E), β > 0

that corresponds, by construction, to the solution z =

ζ∫
−1

Π−1
∗ u dζ of the regularized nonlinear problem (6), (18).

To derive a solution of the initial problem (10), (18) for ρ = 0, we substitute arbitrary measurable functions
z0(ζ), ω0(ζ) into the coefficients µk and consider the map ξ = R0(ζ), R0 : E → E in the same manner as in
Sec. 5. Then, the analytic function z = F 0(ξ), F 0: E → D satisfies the transformed boundary conditions (10) with
H[t(τ)] ∈ SW 1

p>2(l) and the estimate (14). Converting back to the variable ζ, we obtain a solution of problem (10),
(18) that has the same properties. Thus, we proved the following theorem:

Theorem 3. There exists at least one solution of the nonlinear regularized problem (6), (18) (µk = 0,
ζ ∈ Eρ) that satisfies inequalities (20) and (22). If ρ = 0, the solution z = F (ζ) of the limit nonlinear equation (18)
(µk 6≡ 0, ζ ∈ Eρ) satisfies boundary conditions (10) almost everywhere and inequality (14) holds for it.

7. Hydrodynamic Analysis of Results. The mathematical results obtained, as a rule, have not been
interpreted in the context of the filtration problems considered. Here we try to fill this gap.

First of all, let us consider a hydrodynamic interpretation of the new mathematical result formulated in
Theorem 1 on the solvability of problem (10) for analytic functions in the classes Cα(E), α > 0, and W 1

p (E)
(p > 2). In filtration problems, the boundary ∂D∗ = P ∗ ∪ L∗ consists of segments of straight lines ϕ = const and
ψ = const, and, hence, it is a piecewise analytic curve. Therefore, in gravity filtration problems, the boundary
function H(t) is also analytic at the interior points t ∈ l. Another situation arises in designing hydraulic structures.
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Here the pre-image L∗ of the free boundary L is also a segment of a straight line ϕ = const or ψ = const but the
function w = g(x), z ∈ L in (2) is defined, as a rule, as an insufficiently smooth function because L can contain
grooves (ψ = const on L) or drainage slots (ϕ = const on L) [1]. Therefore, the results of theorem 1 are important
from the practical viewpoint.

Unlike in [8], where problems of fluid filtration in an inhomogeneous soil were studied, in Sec. 3 of the present
paper, we studied the properties of a complex potential up to the boundary of the filtration domain. We note, in
particular, the important fact of boundedness of the free boundary L proved in Theorem 2 [estimate (14)].

The main results of this study are reported in Secs. 4–6, focused on fluid filtration in nonideal porous media
(inhomogeneous or anisotropic with a nonlinear resistance law). Since the filtration problems are substantially
nonlinear in this case, we proved the existence of only a generalized solution of the nonlinear filtration equation
that satisfies the boundary-value problem (10) almost everywhere. In this case, if the soil is homogeneous in a small
neighborhood of the filtration domain D and Darcy’s law is linear, which corresponds to a rather large time of
filtration flow through the domain D, then, according to the first part of Theorem 3, the solutions of the nonlinear
filtration problem have the same properties as in the case of an ideal porous medium described by analytic functions
(see Sec. 2).

The work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-00645) and
the “Russian Universities” Program (Grant No. 04.01.038).
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